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In one figure. . .

Storing messages in recurrent neural networks
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Associative memories and the Hopfield network

What is an associative memory?
Two operations:

Store a message,
Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:
Store binary message -11-111-1-11
Retrieve it from -11-111-1?1
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Performance and bounds

Hopfield networks (n neurons )
Diversity : M = n

2log(n) ,

Capacity : n2

2log(n) ,
=

Efficiency ≈ 1
log(n)log2(M+1) .

Example with n = 790 :
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Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single “1”:

Drawback: dmin = 2 :

But easy to decode and minimise the energy:

winner-take-all
These codes can be associated like the distributed
codes. . .
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Our model: Storing

Example:
Message to store: 1000001100101001
For example: a network of c = 4 clusters made of l = 16 neurons each,
1000︸︷︷︸
j1 in c1

0011︸︷︷︸
j2 in c2

0010︸︷︷︸
j3 in c3

1001︸︷︷︸
j4 in c4

,
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Our model: retrieving

1000︸︷︷︸
j1 in c1

0011︸︷︷︸
j2 in c2

0010︸︷︷︸
j3 in c3

????,

Local connection,
Global decoding: sum,
Local decoding:
winner-take-all,
Possibly iterate the two
decodings.
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Density

A parameter to assess performance
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Performance (1/3)

As an associative memory
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Performance (2/3)

Classification
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Comparison of capacities of our network and of the Hopfield
one

Performance (3/3)
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Blurred messages

Limitation
Partial messages must contain perfect information.

Noise model

? ?

Soft decoding
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Performance

Simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000

E
rr

o
r 

p
ro

b
a

b
ili

ty
 (

M
E

R
),

 d
e

n
s
it
y

Amount of stored messages (M)

4x512, one symbol erased, MER (4 iterations)
4x512, 4 blurred symbols, MER (4 iterations)

Density

Comparison of performance when
messages are partially erased and
when they are blurred (b = 5).

Gripon, Berrou, Aliabadi, Jiang Neural coding 2012, Sept. 13th 17 / 22



Correlated messages

Limitation
With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy
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c2 c3
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Correlated messages

Limitation
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Towards a fourth level of sparsity

Limitations
Clusters must be large and few,
Stored messages are all of the same length.

Illustration
0000101000001011 Idea

1 Shorter messages,
2 Clusters and thrifty codes,
3 Sparse network,
4 Sparse messages.

Solution
Global winner-take-all.
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Global winner-take-all

Illustration
Idea

After global message
passing. . .
After local maximum
selections. . .
Global maximum selection.

Interests
Diversity ∝ c2,
Stored messages length may
vary.
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